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Solution of the time-dependent Boltzmann equation
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The time-dependent Boltzmann equation, which describes the propagation of radiation from a point source
in a random medium, is solved exactly in Fourier space. An explicit expression in real space is given in two
and four dimensions. In three dimensions an accurate interpolation formula is found. The average intensity at
a large distance from the source has two peaks, a ballistic peak at time/c and a diffusion peak at
t=r2/D (with ¢ the velocity andD the diffusion coefficient We find that forward scattering adds a tail to the
ballistic peak in two and three dimensions(ct—r)~Y? and «—In(ct—r), respectively. Expressions in the
literature do not contain this taiflS1063-651X%97)08907-1

PACS numbses): 42.25.Bs, 05.606:w, 42.68.Ay, 95.30.Jx

I. INTRODUCTION wherely and |, are Bessel functions, and the step function
O(x) is zero forx<0 and 1 forx>0. We will generalize
The spreading of a pulse of particles or radiation througlthis solution to higher dimensions, using a path-integral
a random medium has attracted considerable attention in sewethod[11,17. In two and four dimensions we are able to
eral fields of physics, such as astrophysics, optics, acousticgive explicit expressions. In three dimensions the solution is
solid-state physics, and heat conductids-3|. In each of  given in terms of its Fourier transform. Using the results for
these systems it is possible to generate a pulse of energy—2 and 4 we construct an interpolation f«= 3, which is
consisting of electromagnetic or acoustic waves, or particle_%orrect within a few percent, for afl andt, away from the
These then propagate through the medium, with a certaifyjistic peak. A qualitative difference with existing results is
!nt.ensnyP(r,t) at_ pointr and t|me§. In the Iong-tme limit that in two and three dimensions the ballistic peak-att is
:olﬁ accurately given by the solutlonzof the diffusion equa'accompanied by a tail resuling from single-scattering
P (r )= 1 exr{ L ) D events. The analytical shape of this taibigct—r) ~ Y2 and
difft Y (47Dt) T2 4Dt al « —In(ct—r) for d=2 and 3, respectively.

Herer =|r| is the distance to the source, assumed to be isoa 'I_'hetrc])ut:lzne _Of tth's p;apr;r kls as ;ciuowsi In .tslic' Itl we
tropic, t is the time after pulse generatiathjs the dimension erive the Fourier transforR(k, ) of the intensityP(r,t)

of the systemD =cl/d is the diffusion coefficient| is the Ior antytcri:m?nsmn. ijn Seg.t_lll W; mve(rjt thte.F;)urlgtr tr?/r\}sfor_m
mean free path, for elastic, isotropic scattering, gni the 0 get the ime and position dependent intensity. We give

absorption length. We disregard here any interference effect%na.lyt'Cal regults fod=2 and 4, and numerical results plus
or effects of inelastic scattering. an interpolation formula fod=3. We compare our results

The diffusion result(1) is very useful, but has certain with the literature, and discuss the ballistic peak in some

shortcomings. First of all, it has a nonzero value at everfeta"' We conclude in Sec. IV.

position even though the energy needs some time to propa-

gate from source to the position of interest. Hence for

r>ct the correctP should be identically zero. Furthermore, !l CALCULATION OF THE FOURIER-TRANSFORMED
large deviations from the diffusion approximation can be ex- INTENSITY

pected at any, for short timed <l|/c. More accurate expres-  The theory of radiative transfer describes the placad
sions for the probability density as function of position and.,. . . - L
time have been proposdd-7], based on the Boltzmann time t de.per-ldence _Of t_heA |ntens!t9(r,t,s? of radiation,
equation(also known as the equation of radiative transferPropagating in the directios (see Fig. 1. Itis based on the
[8,9]), of which the diffusion equation is the long-time limit. Boltzmann equatioi8,9]

In this paper we will present exact solutions of the equa-
tion of radiative transfer, and compare them with the ap-
proximate expression in the literaturé—6]. The solution in
one dimension has been given a long time ago by Hemmer
[10]

1 1
P(r,t) =5 o(r—ct) + 5 O(ct—r)

I,(\c2t2—r4/21)
X | 1g( \/cztz—r2/2l)+ct1— ,
JcrT—?
FIG. 1. Schematic drawing of scattering in a random medium.
d=1 (2 Shown is a single path involviny=5 scattering events.
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J L . The differential operators on the left hand side can be inte-
s Pnts+s VPrts) grated, to yield
=— (17 +1HP(r,t,9+17P(r,t) +¢c718(r,t,9), PN(r,t,§)=I‘1fO droe "o/'Py_1(r—rest—rg/c),
3
(33) (108
P(r,t)= ds' t 3b *
(ry= Q4 P(r,t,8). (3b) Po(r,t,é)chlf droe "o/'S(r—rgst—ry/c).

0 (10b)

Here S is the source ternl, is the mean free path for scat-
tering, andl, is the absorption length. The integration is

performed over all directions’ in d dimensions, normalized
by the surface are@ =272 T(3d) of the unit sphere. We
have assumed isotropic scattering. PN(r,t)zf dropo(ro)Pn_1(r—rg,t—rq/c), (118
The dependence of the intensity on the absorption is

through ar and s independent factor exp(ct/l,). Without

loss of generality we can, therefore, leave the absorption out Po(r,t)zlc‘lf dropo(ro)S(r—rg,t—rg/c), (11b
of our considerations in the following, taking effectively
[,—. We take the isotropic point source

Similarly, we find for the angular average of the intensity

where we defined

S(r,t,8)=8(r) &(1), 4 e/l
rN=—~—a-1- 12
and seek for a solution to Eq43) for t>0. (We may set Po() Qqlret 12

P=0 fort<0.) Due to the spherical symmetr[q?,(r,t,é) and

P(r,t) only depend o =|r|, t, and w=s-r/r. The Boltz-
mann equatior§3) simplifies to

Using the sourcé4) we can give the explicit expression for
the ballistic intensitiesN=0)

( J g 1-u? d ) Po(r,t,5)=e "' 5(r—cts) O (t)
I — | P(r,t,
cat PHar T T g PN Ly O —eS(p—17) 133
:e — s
=—P(r,t,u)+P(r,1), (5) Qar " *pg(n)
1 —ct/l
P(r,t)= f_ldupd(M)P(r,t,M)- (6) Po(r,t)= —d—é(r ct). (13b)
The weight functiorpy(u) is defined by The 1" in the § function denotes that it is a single-sidéd
function having all its weight in the regiop<1. The solu-
I'(d/2) _ tion of the recursion relation€l1) and consequently of Eq.
pd(lu') (1_M2)(d 3)/21 d>1. (7) (10) then is

VAl (d—1)/2)

N N
In one dimension we fing,(u)=36(uw—1)+38(u+1).
To solve the Boltzmann equation it is useful not to make P(r,t)=I i[[o f dripo(ri) |6 Ct—zo ri Z
use of the spherical symmetry initially. We consider sepa- (149
rately the contributions to the intensity frob=0,1,2,. ..,
N
5( ct—E ri)
i=0

scattering events,

f[ J riPo(ri)

. PN(r,t,§)=le[
P(r,t,9) = Z Pn(r,t,9), P(r,t)=Nz:O Pn(r,t). (8)

N
o , Xl r—2>r )5(r0 s), (14b)
Such a decomposition is customary in the theory of random =0
walks [12,13. It is also at the basis of the path-integral A
method for the theory of the Boltzmann equat{di]. The  wherery=rq/|ry|.
partial intensitiesP), satisfy Summation over alN of Eq. (10) results in
J 1 1 - - < -
EJFS V+17 Py(r,t,9=1"1Py_y(r,t), N>0, P(r,t,s)=Po(r,t,s)Jrlflf0 droe "/'"P(r—ryst—rg/c),
(9a) (15

1 1 and leads to the spherical analog of the Schwarzschild-Milne
Py +5 V41~ )Po(r t,9)=c 1S(r,t). (9b) equation8]



P(r,t)=PO(r,t)+fdro p(rg)P(r—rqg,t—rg/c).
(16)

At this point, we introduce the Fourier transform

P(k,w)=J ermdt glet=knp(r ), (17
0

which depends only om andk=|k|. We first compute the
partial intensitiesP(k, ), by taking the Fourier transform
of Py(r,t). The expression factorizes inté+ 1 equivalent

integrals overr;, which can be performed. The result is

o [t duppg(w)  \NTH
_ 1 -
Prik,0)=c 'Ull—iwl/cﬂkm (183
oy Lt (1 wlle) ) e
- 1-iwllc '
(18b)
Pn(k,®,9)=Py_1(k,o) (189

1—iwl/c+ilk-s’

where ,F; is a hypergeometric function. This expression is
the frequency and direction dependent analog of the result

for a random walK12].

lll. INVERSION OF THE FOURIER TRANSFORM

In the preceding section we have computed the Fourier-

transformed intensity for arbitrary dimensioh In this sec-

tion we invert the Fourier transform, which can be done ana-

Iytically for d=2 andd=4, and numerically fod=3.

A. Two dimensions

In two dimensions Eq(18) simplifies to

Puk,w)=c U[(1—iwl/c)®+k?12]" NtV (19)

The ballisticN=0 term consists of & function in real space
and is given in Eq(13), (whereQ,=27). After an inverse
Fourier transformation with respect kowe find for N=1

r )(Nl)lz

PN ©)= 52| 21 ST wllo)

cl?

X MK(N_l)/z((l_HUI/C)r/I)

(20)
Using the representation
(=T fdasmrf)b st (21)
I'(v+

and the substitution cogk-ct/r, one can see that ERO) is
the Fourier transform of
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e-ctl g o\ N-2 r2 | (N-2)12
PnrD =570 (N—l)!(l_) (1_ W)

X0O(ct—r), N=1. (22
Summing overN, and adding the ballistilN=0 term

from Eq. (13), we find the total intensity

efct/I

P(r,t)= o 5(ct—r)+2 1Ict<1_

r2 —-1/2
c’t?

xexd | (V2 —r?—ct)]®(ct—r).

The diffusion result(1), with D=cl/2, is recovered for
t>r/c. It is remarkable that the diffusion approximation
does not require thatt>1, but only thatct>r. We will see
that this is special for two dimensions.

To obtain the angular resolved intensIFt)q(r,t,§) we per-
form the integral over in Eq. (15). The integrand vanishes
for ro>r . defined by

(23

(ct)?—

rmaXZZ(Ct—I‘/.L) . (24)

|r_rmax§‘=Ct_rmax<:>
We thus find for the intensity the resulN& 1)
1 Fmax —ct/l 2
Pn(r,t,u)= mfo droe”*"[(ct=rg)

—(r—rg9)2(N-3/

e—ct/l 1 /Ct N-1
" 27 (N=1)! ct—r,u\l_)
2\ (N=1)/2
X 1_W> O(ct—r). (25

Summing oveN and including the ballistic contributiof13)
for N=0, we find

P(r.t,9=e "'5(r—cts)O(t) + ——————
(r,t,;s)=e (r—cts) (t)+27-rl(ct—r-s)
xexg | Y(yc?t2—r?—ct)]®(ct—r). (26)

B. Four dimensions

In four dimensions the Fourier-transformed intensity is
given by

Pu(k,w)=2N" e ({J(1-iwl/c)®+kI%+1

—iwl/c)”(N*D, (27)
To invert the Fourier transform we use
f dk K re(|k|) = ! jwdksz kr)f(k
(27)46 (| |)—477#r . 1(kr)f(k),
(28)

so that
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oN-1g-ctl (.,

PN(r1t):W o

—-2N
5 dk Jy(kr)k

r/l+iow
xf dz &% JKk?r2+ 22— z]N*tL. (29
r/l—io
The integral over yields
i(N+2)(kr)NT13 4 1 (ket)O(t)r/ct.

After integration ovek we find, forN=1,

1 g 1 [et\N?
PrrD =28 el T
N+1 2 N-1®
Xm 1- W (ct—r). (30)

Again we sum over allN, and include the ballistic term
N=0, to find the total intensity

—ct/l
P(I’,t): Wé(r—ct)#—

L r? Jr2I
c’t?  ct

e
(mlct)?

xexp(—r?/lct)®(ct—r). (31

If both r andl are<ct we find the diffusion resul¢l), with
diffusion constanD = icl.

In the same way as we did far=2 we can calculate the
angular resolved intensity(r,t,u) from Egs.(15) and(30).
We find (N=1)

—ct/l
2r3
exp(—r?/lct)
(mrlct)?
><(1—y2)(1+y2—2uy)+2(1—p¢y)llct
(1+y°—2uy)?
X0O(ct—r),

P(r.t,u)= S(r—ct)d(pu—1")(1—pu?) 2

(32

where we have abbreviatgg=r/ct.

C. Three dimensions
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0.06 T " Exact
| --- Approximation
:':\ -- Diffusion
< 0.04F I
¢ 0.02 |

3
ct/l

FIG. 2. Angular average of the intensi®(r,t) for three dimen-
sions as a function of timg, at distancer=2.0/, 2.8, and 4.0,
from left to right. The solid lines are the exact reql6), which is
very close to the interpolation formulg6) (dashed lings The
dotted lines are the diffusion result). The intensity has a mini-
mum forr greater than some, .

Taking this normalization into account, we find fde=1 the
approximation

PN(I‘ ,t):

e T(EN+3) /ct)”3
73 aNTEN)
N—1

Hlw

X O(ct—r). (35

1 -
c’t?
Because of its construction as an interpolation between two

exact results, we expect E(B5) to be rather accurate.
The total intensity including the ballistic peak, becomes

—ct/l (1_r2lc2t2)l/8
~ — — —ct/l
P(r D= gz o0~ O+ =iz ©
ct 2 13/4
X G T 1——2—zct )@(ct—r), (363
* F(%N+§) xN
G(x)=8(3x) 32y, — = —~eX\/1+2.026Kk.
N=1 T(3N) N!
(36b)

For |,r<ct the diffusion result(1) is regained, with
D=cl/3.

To check the accuracy of this interpolation we have com-
pared Eq.(36) with a numerical inversion of the Fourier
transform(see the Appendjx In Fig. 2 we have plotted the
intensity as a function o€t/l for three values of/I. The

In three dimensions the Fourier-transformed intensitydashed curves are the approximati@6). The difference is

reads

N+1

1 I
Diibal E Py

Pr(k,w)=c 1

(33

The inverse can be evaluated analytically fd=0 and
N=1, but not for arbitraryN. An interpolation between the

results(22) and(30) for d=2 and 4 suggests the approxima-

tion Pyoc[1—r2/(ct)?]3N4~ 1. The coefficient in the expo-
nent ensures that the diffusion limit is obtained whieand
| are <ct. The definition(14) implies the normalization

N
e

1/ct
f drPN(r,t)= m(l—

—ct/l

(39

barely visible on this scale, and is of the order of 2% outside
the ballistic peak and its tail.

In Fig. 3 we compare our result with approximations from
the literature. Perelmaet al. [4] have improved upon the
diffusion result using a path-integral method, taking the av-
erage velocity of the light equal to, such that the intensity
vanishes forct<<r. Their result

I'(3ct/4l +5/2) / r2 \ 3ctd
P(r,t)= 1- —>
7t (3cya +1)\ - ¢t

O(ct—r),
(37)

is shown in Fig. 3. It does not contain the ballistic peak and
overestimates the diffusion maximum. Another extension of
the diffusion result is due to Kaltenbach and Kaschkg
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The single-scattering intensity is given by E@4) with

.
0.04 N=1. Since the integration is over only two coordinates, we
readily find
= 0.03r
\5 5 ( t ) e—ct/l 1 1 (41)
rl 1 = — b
A 002 BOR R T ct—ru (Ct— g9 2
&~

HE wherer . IS given in Eq.(24). Integration overu with the
0.01- ; e Perelman et al. weight functionpg(w) given in Eq.(7), yields
; ." - --- Kaltenbach et al.

; { |=—— Durian et al. d-2g-ct/l
S ¥ 1 — 2:2_ »2\(d—=3)/2
oo 2 4 6 8 10 Py(r,t) Qg cn=? — (C%t%2—r?) JF,
ct/l ,
r
14 _o5.14.
FIG. 3. Average intensityP(r,t) as a function of timet at x| z,d=2:zd; C2t2)' (42)

distancer =2.8. The solid line is the exact resul\5). The dotted

line is the diffusion resulfl), the short-dashed line is the res{8f) For dimensions greater than three the hypergeometric
from Perelmaret al. [4], the dashed-dotted line is the res(88)  function ,F; has a singularity for —ct which is canceled
from Kaltenbach and KaschKé&], and the long-dashed line is the by the factor ¢%t>—r?)(@=3/2 The termP,, therefore, is
result(40) from Durian and Rudnick6]. finite atr =ct and contributes no tail to the ballistic peak for
d>3. In contrast, ford<3, the termP,; has an integrable
singularity atr =ct, which adds a tail to the ballistic peak.

P(r,t)=mexq—ct/2I) 2\/§5(ct—r\/§)llr The singularity is logarithmic in three dimensions,

e U ct4r

O(ct—r+3) Py(r,t)= In , d=3 (43)
1, (V%2 =3r%20) |, (38 4qlctr  ct—r
e : )
and algebraic in two dimensions
and is also plotted in Fig. 3. The difference with the exact gct!
solution is clear. Their method is based on adding to the Py(r,t)= (c’?—r?3)~12, d=2. (44)

diffusion equation a second order time derivative, which can 2l

be found when deriving the diffusion equation from the Bolt-
zmann equation, but which does not yield the correct ballis; ! /2]
tic peak. The same was done by Durian and Rudpgdibut nanced itself by a factoe™> [cf. Eq. (2)].

: : X L The tail of the ballistic peak in two and in three dimen-
with the prefactor of this second order time derivative chosenSions leads to a minimum in the intensitv as function of time
such that the ballistic peak is &tr/c. Their result Y '

providedr is large enough. For this minimum to occur we
needr >[(11+54/5)/2]%4~3.330 for d=2 andr=2.4 for
e 2 _ d=3. The ballistic peak and its tail are also present in sys-
+ =] dé(ct—r) . . . . . S :
2ct 8 tems with anisotropic scattering. The total intensity in this
(390 peak still decreases @s °"', | being the mean free path for
scattering, whereas the diffusion peak scales with the trans-

In one dimension the ballistic peak has no tail, but is en-

~3ct2 (|2
P(r,t)= 4_1747:?5,(“_")"‘

9 — Ctl,(3CAZ—1212) port mean free patfg].
tar [1(3Vcte—r4/2)+
Vet —r IV. CONCLUSION
X0O(ct—r)}, (40) We have presented exact solutions to the time-dependent

Boltzmann equatiorior equation of radiative transferThe

is also plotted in Fig. 3. Again, the difference with the exactmethod used is based on a summation over the paths, that
solution is clear. Furthermore, this expression introduces thbrings a particle from source to some positionafter N
derivative of thes function att=c/r. scattering events. This method has been used before, both in
connection with the Boltzmann equatiddl] and in the
theory of random walkg412,13. However, as far as we
know, the exact solution presented here was not known. An

The main qualitative new feature of our result for theimportant feature of this solution is the tail to the ballistic
time-dependent angular average of the intensity in two angeak, which has not been noticed in the literature, either in
three dimensions is the tail of the ballistic peakat/c (see  analytical studieg4—6], in experimental resultgl4], or in
Fig. 2. The ballistic peak itself consists of & function  numerical simulations based on the Monte Carlo method
Py~ 8(t—r/c) due to unscattered radiation. The tail towards[13,15,16 (the tail is barely noticeable in the numerical
largert is due to radiation which has undergone a singlesimulations of Ref[6]). The tail requires a continuum de-
forward scattering event. The shape of the tail is given byscription; it is not present in lattice mod¢k3] for a random
P4, which can be computed analytically for any dimension.walk. Experimentally the observation of the tail is challeng-

D. Ballistic peak
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ing, since the time resolution needed is below the scattering
mean free time. % Pn(r,t)
N=4
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APPENDIX: NUMERICAL INVERSION OF THE FOURIER The integral ovemw can be done by contour integration, clos-
TRANSFORM IN THREE DIMENSIONS ing the contour in the lower half of the complex plane. The
In Eg. (33 we gave an analytical expression for contribution from the pol&=arctaik/(1-iw)] is given by
Pn(k, o) in three dimensions. To find the real space intensity

P(r,t) we have to sum over all the numbirof scattering
events and invert the Fourier transform. In this appendix we

-1

(A1)

k2
Lpoid k,t) =27 exp(tk/tark—1) <o O (m/2- k).

show how this can be done numerically. This is not straight- (A2)

forward, because of the singularity &t ct. For notational

simplicity we takel =c=1 in what follows. To calculate the contribution from the branch cut between
The sum of the contributions fod=4 is has no singular- w=-—i—k andw=—i+k we parametrizeo=—1i+ &k. We

ity and is smooth at=r. It is given by find

) 4K (5A*—10A%7%+ ) + (A% + m2)2(BA%— 72)
CO& té) (4|(2—A2—’77'2)2+ 16k2A2

—t
Icu[(k.t)=7;—iz—flld§ +2 sin(kté) A

" 2k?(BA%2— 72) (A% =372+ (A’— 72) (A% + 7?)2

(AKT— AZ=72)7+ T6PA ! (A3)

where we have abbreviatet(£) =2 artanh £. Next we cal-  The total intensity is then given by

culate the contributions foN<3. The ballistic termP is

already given in Eg(13) and the single-scattering terf in

Eg. (43). For N=2,3 we use the same parametrization as P(r’t):NZO PN(r’th

above, but interchange the integrals oleand ¢. We find

et fl xfo dk ksin(kr)[Iodk,t) + ek, t)].
r

P,(r,t)= ot /tdg(SAz— ?), (Ada)

3

(A5)

—t
Py(r,t)= 86' ! deA(A2—72)(té—r1).  (Adb) E:r(]asse integrals can be calculated numerically without prob-
rit .
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