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Solution of the time-dependent Boltzmann equation

J. C. J. Paasschens
Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands

and Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
~Received 12 March 1997!

The time-dependent Boltzmann equation, which describes the propagation of radiation from a point source
in a random medium, is solved exactly in Fourier space. An explicit expression in real space is given in two
and four dimensions. In three dimensions an accurate interpolation formula is found. The average intensity at
a large distancer from the source has two peaks, a ballistic peak at timet5r /c and a diffusion peak at
t.r 2/D ~with c the velocity andD the diffusion coefficient!. We find that forward scattering adds a tail to the
ballistic peak in two and three dimensions,}(ct2r )21/2 and}2 ln(ct2r), respectively. Expressions in the
literature do not contain this tail.@S1063-651X~97!08907-1#

PACS number~s!: 42.25.Bs, 05.60.1w, 42.68.Ay, 95.30.Jx
g
se
ti

r
le
ta

a

is

ec

n
er
op
fo
e,
ex
-
nd
n
fe
t.
ua
p

m

on

ral
to
is

for

is

ng

e

m
ive
s
s
me

m.
I. INTRODUCTION

The spreading of a pulse of particles or radiation throu
a random medium has attracted considerable attention in
eral fields of physics, such as astrophysics, optics, acous
solid-state physics, and heat conduction@1–3#. In each of
these systems it is possible to generate a pulse of ene
consisting of electromagnetic or acoustic waves, or partic
These then propagate through the medium, with a cer
intensityP(r ,t) at point r and timet. In the long-time limit
it is accurately given by the solution of the diffusion equ
tion

Pdiff~r ,t !5
1

~4pDt !d/2
expS 2

r 2

4Dt
2ct/ l aD . ~1!

Herer5ur u is the distance to the source, assumed to be
tropic, t is the time after pulse generation,d is the dimension
of the system,D5cl/d is the diffusion coefficient,l is the
mean free path, for elastic, isotropic scattering, andl a is the
absorption length. We disregard here any interference eff
or effects of inelastic scattering.

The diffusion result~1! is very useful, but has certai
shortcomings. First of all, it has a nonzero value at ev
position even though the energy needs some time to pr
gate from source to the position of interest. Hence
r.ct the correctP should be identically zero. Furthermor
large deviations from the diffusion approximation can be
pected at anyr , for short timest, l /c. More accurate expres
sions for the probability density as function of position a
time have been proposed@4–7#, based on the Boltzman
equation~also known as the equation of radiative trans
@8,9#!, of which the diffusion equation is the long-time limi

In this paper we will present exact solutions of the eq
tion of radiative transfer, and compare them with the a
proximate expression in the literature@4–6#. The solution in
one dimension has been given a long time ago by Hem
@10#

P~r ,t !5
1

2
e2ct/2lFd~r2ct!1

1

2l
Q~ct2r !

3S I 0~Ac2t22r 2/2l !1ct
I 1~Ac2t22r 2/2l !

Ac2t22r 2
D G ,

d51 ~2!
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where I 0 and I 1 are Bessel functions, and the step functi
Q(x) is zero forx,0 and 1 forx.0. We will generalize
this solution to higher dimensions, using a path-integ
method@11,12#. In two and four dimensions we are able
give explicit expressions. In three dimensions the solution
given in terms of its Fourier transform. Using the results
d52 and 4 we construct an interpolation ford53, which is
correct within a few percent, for allr and t, away from the
ballistic peak. A qualitative difference with existing results
that in two and three dimensions the ballistic peak atr5ct is
accompanied by a tail resulting from single-scatteri
events. The analytical shape of this tail is}(ct2r )21/2 and
}2 ln(ct2r) for d52 and 3, respectively.

The outline of this paper is as follows. In Sec. II w
derive the Fourier transformP(k,v) of the intensityP(r ,t)
for any dimension. In Sec. III we invert the Fourier transfor
to get the time and position dependent intensity. We g
analytical results ford52 and 4, and numerical results plu
an interpolation formula ford53. We compare our result
with the literature, and discuss the ballistic peak in so
detail. We conclude in Sec. IV.

II. CALCULATION OF THE FOURIER-TRANSFORMED
INTENSITY

The theory of radiative transfer describes the placer and
time t dependence of the intensityP(r ,t,ŝ) of radiation,
propagating in the directionŝ ~see Fig. 1!. It is based on the
Boltzmann equation@8,9#

FIG. 1. Schematic drawing of scattering in a random mediu
Shown is a single path involvingN55 scattering events.
1135 © 1997 The American Physical Society
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]

c]t
P~r ,t,ŝ!1 ŝ•¹P~r ,t,ŝ!

52~ l211 l a
21!P~r ,t,ŝ!1 l21P~r ,t !1c21S~r ,t,ŝ!,

~3a!

P~r ,t !5E dŝ8
Vd

P~r ,t,ŝ8!. ~3b!

HereS is the source term,l is the mean free path for sca
tering, and l a is the absorption length. The integration
performed over all directionsŝ8 in d dimensions, normalized
by the surface areaVd52pd/2/G( 12d) of the unit sphere. We
have assumed isotropic scattering.

The dependence of the intensity on the absorption
through ar and ŝ independent factor exp(2ct/la). Without
loss of generality we can, therefore, leave the absorption
of our considerations in the following, taking effective
l a→`. We take the isotropic point source

S~r ,t,ŝ!5d~r !d~ t !, ~4!

and seek for a solution to Eq.~3! for t.0. ~We may set
P[0 for t,0.! Due to the spherical symmetry,P(r ,t,ŝ) and
P(r ,t) only depend onr5ur u, t, andm[ ŝ•r /r . The Boltz-
mann equation~3! simplifies to

l S ]

c]t
1m

]

]r
1
12m2

r

]

]m DP~r ,t,m!

52P~r ,t,m!1P~r ,t !, ~5!

P~r ,t !5E
21

1

dmrd~m!P~r ,t,m!. ~6!

The weight functionrd(m) is defined by

rd~m!5
G~d/2!

ApG„~d21!/2…
~12m2!~d23!/2, d.1. ~7!

In one dimension we findr1(m)5
1
2d(m21)1 1

2d(m11).
To solve the Boltzmann equation it is useful not to ma

use of the spherical symmetry initially. We consider se
rately the contributions to the intensity fromN50,1,2,. . . ,
scattering events,

P~r ,t,ŝ!5 (
N50

`

PN~r ,t,ŝ!, P~r ,t !5 (
N50

`

PN~r ,t !. ~8!

Such a decomposition is customary in the theory of rand
walks @12,13#. It is also at the basis of the path-integr
method for the theory of the Boltzmann equation@11#. The
partial intensitiesPN satisfy

S ]

c]t
1 ŝ•¹1 l21DPN~r ,t,ŝ!5 l21PN21~r ,t !, N.0,

~9a!

S ]

c]t
1 ŝ•¹1 l21DP0~r ,t,ŝ!5c21S~r ,t !. ~9b!
is

ut

-

m

The differential operators on the left hand side can be in
grated, to yield

PN~r ,t,ŝ!5 l21E
0

`

dr0e
2r0 / lPN21~r2r 0ŝ,t2r 0 /c!,

~10a!

P0~r ,t,ŝ!5c21E
0

`

dr0e
2r0 / lS~r2r 0ŝ,t2r 0 /c!.

~10b!

Similarly, we find for the angular average of the intensity

PN~r ,t !5E dr0p0~r0!PN21~r2r0 ,t2r 0 /c!, ~11a!

P0~r ,t !5 lc21E dr0p0~r0!S~r2r0 ,t2r 0 /c!, ~11b!

where we defined

p0~r !5
e2r / l

Vdlr
d21 . ~12!

Using the source~4! we can give the explicit expression fo
the ballistic intensities (N50)

P0~r ,t,ŝ!5e2ct/ ld~r2ctŝ!Q~ t !

5e2ct/ l
d~r2ct!d~m212!

Vdr
d21rd~m!

, ~13a!

P0~r ,t !5
e2ct/ l

Vdr
d21 d~r2ct!. ~13b!

The 12 in the d function denotes that it is a single-sidedd
function having all its weight in the regionm<1. The solu-
tion of the recursion relations~11! and consequently of Eq
~10! then is

PN~r ,t !5 l F)
i50

N E dr i p0~r i !GdS ct2(
i50

N

r i D dS r2(
i50

N

r i D ,
~14a!

PN~r ,t,ŝ!5Vdl F)
i50

N E dr i p0~r i !GdS ct2(
i50

N

r i D
3dS r2(

i50

N

r i D d~ r̂02 ŝ!, ~14b!

where r̂05r0 /ur0u.
Summation over allN of Eq. ~10! results in

P~r ,t,ŝ!5P0~r ,t,ŝ!1 l21E
0

`

dr0e
2r0 / lP~r2r 0ŝ,t2r 0 /c!,

~15!

and leads to the spherical analog of the Schwarzschild-M
equation@8#
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P~r ,t !5P0~r ,t !1E dr0 p~r0!P~r2r0 ,t2r 0 /c!.

~16!

At this point, we introduce the Fourier transform

P~k,v!5E drE
0

`

dt ei ~vt2k•r !P~r ,t !, ~17!

which depends only onv andk5uku. We first compute the
partial intensitiesPN(k,v), by taking the Fourier transform
of PN(r ,t). The expression factorizes intoN11 equivalent
integrals overr i , which can be performed. The result is

PN~k,v!5c21l S E
21

1 dmrd~m!

12 iv l /c1 iklm D N11

~18a!

5c21l F 2F1„
1
2 ,1;

1
2d;2k2l 2~12 iv l /c!22

…

12 iv l /c
GN11

,

~18b!

PN~k,v,ŝ!5PN21~k,v!
1

12 iv l /c1 i l k• ŝ
, ~18c!

where 2F1 is a hypergeometric function. This expression
the frequency and direction dependent analog of the re
for a random walk@12#.

III. INVERSION OF THE FOURIER TRANSFORM

In the preceding section we have computed the Four
transformed intensity for arbitrary dimensiond. In this sec-
tion we invert the Fourier transform, which can be done a
lytically for d52 andd54, and numerically ford53.

A. Two dimensions

In two dimensions Eq.~18! simplifies to

PN~k,v!5c21l @~12 iv l /c!21k2l 2#2~N11!/2. ~19!

The ballisticN50 term consists of ad function in real space
and is given in Eq.~13!, ~whereV252p). After an inverse
Fourier transformation with respect tok we find forN>1

PN~r ,v!5
1

cl2S r

2l ~12 iv l /c! D
~N21!/2

3
1

G„~N11!/2…
K ~N21!/2„~12 iv l /c!r / l ….

~20!

Using the representation

Kn~z!5
Ap~z/2!n

G~n1 1
2 !
E
0

`

dj~sinhj!2ne2zcoshj, ~21!

and the substitution coshj5ct/r, one can see that Eq.~20! is
the Fourier transform of
ult

r-

-

PN~r ,t !5
e2ct/ l

2p l 2
1

~N21!! S ctl D N22S 12
r 2

c2t2D ~N22!/2

3Q~ct2r !, N>1. ~22!

Summing overN, and adding the ballisticN50 term
from Eq. ~13!, we find the total intensity

P~r ,t !5
e2ct/ l

2pr
d~ct2r !1

1

2p lctS 12
r 2

c2t2D
21/2

3exp@ l21~Ac2t22r 22ct!#Q~ct2r !. ~23!

The diffusion result~1!, with D5cl/2, is recovered for
t@r /c. It is remarkable that the diffusion approximatio
does not require thatct@ l , but only thatct@r . We will see
that this is special for two dimensions.

To obtain the angular resolved intensityPN(r ,t,ŝ) we per-
form the integral overr 0 in Eq. ~15!. The integrand vanishe
for r 0.rmax, defined by

ur2rmaxŝu5ct2rmax⇔rmax5
~ct!22r 2

2~ct2rm!
. ~24!

We thus find for the intensity the result (N>1)

PN~r ,t,m!5
1

2p l N~N22!! E0
rmax

dr0e
2ct/ l@~ct2r 0!

2

2~r2r 0ŝ!
2#~N23!/2

5
e2ct/ l

2p l ~N21!!

1

ct2rmS ctl D N21

3S 12
r 2

c2t2D ~N21!/2

Q~ct2r !. ~25!

Summing overN and including the ballistic contribution~13!
for N50, we find

P~r ,t,ŝ!5e2ct/ ld~r2ctŝ!Q~ t !1
1

2p l ~ct2r• ŝ!

3exp@ l21~Ac2t22r 22ct!#Q~ct2r !. ~26!

B. Four dimensions

In four dimensions the Fourier-transformed intensity
given by

PN~k,v!52N11c21l ~A~12 iv l /c!21k2l 211

2 iv l /c!2~N11!. ~27!

To invert the Fourier transform we use

E dk

~2p!4
eik•r f ~ uku!5

1

4p2r E0
`

dk k2J1~kr ! f ~k!,

~28!

so that
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PN~r ,t !5
2N21e2ct/ l

p3i l Nr N13E
0

`

dk J1~kr !k
22N

3E
r / l2 i`

r / l1 i`

dz ezct/r@Ak2r 21z22z#N11. ~29!

The integral overz yields

i ~N11!~kr !N11JN11~kct!Q~ t !r /ct.

After integration overk we find, forN>1,

PN~r ,t !5
1

p2e
2ct/ l

1

ctl3S ctl D N23

3
N11

~N21!! F12
r 2

c2t2G
N21

Q~ct2r !. ~30!

Again we sum over allN, and include the ballistic term
N50, to find the total intensity

P~r ,t !5
e2ct/ l

2p2r 3
d~r2ct!1

1

~p lct !2S 12
r 2

c2t2
1
2l

ctD
3exp~2r 2/ lct !Q~ct2r !. ~31!

If both r and l are!ct we find the diffusion result~1!, with
diffusion constantD5 1

4cl.
In the same way as we did ford52 we can calculate the

angular resolved intensityP(r ,t,m) from Eqs.~15! and~30!.
We find (N>1)

P~r ,t,m!5
pe2ct/ l

2r 3
d~r2ct!d~m212!~12m2!21/2

1
exp~2r 2/ lct !

~p lct !2

3
~12y2!~11y222my!12~12my!l /ct

~11y222my!2

3Q~ct2r !, ~32!

where we have abbreviatedy5r /ct.

C. Three dimensions

In three dimensions the Fourier-transformed intens
reads

PN~k,v!5c21l F 1klarctanS kl

12 iv l /cD G
N11

. ~33!

The inverse can be evaluated analytically forN50 and
N51, but not for arbitraryN. An interpolation between the
results~22! and~30! for d52 and 4 suggests the approxim
tion PN}@12r 2/(ct)2#3N/421. The coefficient34 in the expo-
nent ensures that the diffusion limit is obtained whenr and
l are!ct. The definition~14! implies the normalization

E drPN~r ,t !5
1

N! S ctl D Ne2ct/ l . ~34!
y

Taking this normalization into account, we find forN>1 the
approximation

PN~r ,t !.
e2ct/ l

p l 3
G~ 3

4N1 3
2 !

ApN!G~ 3
4N!

S ctl D N23

3S 12
r 2

c2t2D
3
4N21

Q~ct2r !. ~35!

Because of its construction as an interpolation between
exact results, we expect Eq.~35! to be rather accurate.

The total intensity including the ballistic peak, become

P~r ,t !.
e2ct/ l

4pr 2
d~r2ct!1

~12r 2/c2t2!1/8

~4p lct/3!3/2
e2ct/ l

3GS ctl F12
r 2

c2t2G
3/4DQ~ct2r !, ~36a!

G~x!58~3x!23/2(
N51

` G~ 3
4N1 3

2 !

G~ 3
4N!

xN

N!
.exA112.026/x.

~36b!

For l ,r!ct the diffusion result ~1! is regained, with
D5cl/3.

To check the accuracy of this interpolation we have co
pared Eq.~36! with a numerical inversion of the Fourie
transform~see the Appendix!. In Fig. 2 we have plotted the
intensity as a function ofct/ l for three values ofr / l . The
dashed curves are the approximation~36!. The difference is
barely visible on this scale, and is of the order of 2% outs
the ballistic peak and its tail.

In Fig. 3 we compare our result with approximations fro
the literature. Perelmanet al. @4# have improved upon the
diffusion result using a path-integral method, taking the a
erage velocity of the light equal toc, such that the intensity
vanishes forct,r . Their result

P~r ,t !5
G~3ct/4l15/2!

pApt3G~3ct/4l11!
S 12

r 2

c2t2D
3ct/4l

Q~ct2r !,

~37!

is shown in Fig. 3. It does not contain the ballistic peak a
overestimates the diffusion maximum. Another extension
the diffusion result is due to Kaltenbach and Kaschke@5#,

FIG. 2. Angular average of the intensityP(r ,t) for three dimen-
sions as a function of timet, at distancer52.0l , 2.8l , and 4.0l ,
from left to right. The solid lines are the exact result~A5!, which is
very close to the interpolation formula~36! ~dashed lines!. The
dotted lines are the diffusion result~1!. The intensity has a mini-
mum for r greater than somer c .
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P~r ,t !5
3A3
8p l 2

exp~2ct/2l !F2A3d~ct2rA3!l /r

1
Q~ct2rA3!

Ac2t223r 2
I 1~Ac2t223r 2/2l !G , ~38!

and is also plotted in Fig. 3. The difference with the ex
solution is clear. Their method is based on adding to
diffusion equation a second order time derivative, which c
be found when deriving the diffusion equation from the Bo
zmann equation, but which does not yield the correct ba
tic peak. The same was done by Durian and Rudnick@6# but
with the prefactor of this second order time derivative cho
such that the ballistic peak is att5r /c. Their result

P~r ,t !5
e23ct/2l

4p l 2 H l 2r d8~ct2r !1S 3l2ct1 9

8D d~ct2r !

~39!

1
9

4l F I 1~3Ac2t22r 2/2!1
ctI2~3Ac2t22r 2/2!

Ac2t22r 2
G

3Q~ct2r !%, ~40!

is also plotted in Fig. 3. Again, the difference with the exa
solution is clear. Furthermore, this expression introduces
derivative of thed function att5c/r .

D. Ballistic peak

The main qualitative new feature of our result for t
time-dependent angular average of the intensity in two
three dimensions is the tail of the ballistic peak att5r /c ~see
Fig. 2!. The ballistic peak itself consists of ad function
P0;d(t2r /c) due to unscattered radiation. The tail towar
larger t is due to radiation which has undergone a sin
forward scattering event. The shape of the tail is given
P1, which can be computed analytically for any dimensio

FIG. 3. Average intensityP(r ,t) as a function of timet at
distancer52.8l . The solid line is the exact result~A5!. The dotted
line is the diffusion result~1!, the short-dashed line is the result~37!
from Perelmanet al. @4#, the dashed-dotted line is the result~38!
from Kaltenbach and Kaschke@5#, and the long-dashed line is th
result ~40! from Durian and Rudnick@6#.
t
e
n
-
-

n

t
e

d

e
y
.

The single-scattering intensity is given by Eq.~14! with
N51. Since the integration is over only two coordinates,
readily find

P1~r ,t,m!5
e2ct/ l

lVd

1

ct2rm

1

~ct2rmax!
d22 , ~41!

wherermax is given in Eq.~24!. Integration overm with the
weight functionrd(m) given in Eq.~7!, yields

P1~r ,t !5
2d22e2ct/ l

Vdl ~ct!
2d24 ~c2t22r 2!~d23!/2

2F1

3S 1
2 ,d22; 12d;

r 2

c2t2D . ~42!

For dimensions greater than three the hypergeome
function 2F1 has a singularity forr→ct which is canceled
by the factor (c2t22r 2)(d23)/2. The termP1, therefore, is
finite at r5ct and contributes no tail to the ballistic peak fo
d.3. In contrast, ford<3, the termP1 has an integrable
singularity atr5ct, which adds a tail to the ballistic peak
The singularity is logarithmic in three dimensions,

P1~r ,t !5
e2ct/ l

4p lctr
ln
ct1r

ct2r
, d53 ~43!

and algebraic in two dimensions

P1~r ,t !5
e2ct/ l

2p l
~c2t22r 2!21/2, d52. ~44!

In one dimension the ballistic peak has no tail, but is e
hanced itself by a factorect/2l @cf. Eq. ~2!#.

The tail of the ballistic peak in two and in three dime
sions leads to a minimum in the intensity as function of tim
provided r is large enough. For this minimum to occur w
needr.@(1115A5)/2#1/2l.3.330l for d52 andr*2.4l for
d53. The ballistic peak and its tail are also present in s
tems with anisotropic scattering. The total intensity in th
peak still decreases ase2ct/ l , l being the mean free path fo
scattering, whereas the diffusion peak scales with the tra
port mean free path@9#.

IV. CONCLUSION

We have presented exact solutions to the time-depen
Boltzmann equation~or equation of radiative transfer!. The
method used is based on a summation over the paths,
brings a particle from source to some positionr , after N
scattering events. This method has been used before, bo
connection with the Boltzmann equation@11# and in the
theory of random walks@12,13#. However, as far as we
know, the exact solution presented here was not known.
important feature of this solution is the tail to the ballist
peak, which has not been noticed in the literature, eithe
analytical studies@4–6#, in experimental results@14#, or in
numerical simulations based on the Monte Carlo meth
@13,15,16# ~the tail is barely noticeable in the numeric
simulations of Ref.@6#!. The tail requires a continuum de
scription; it is not present in lattice models@13# for a random
walk. Experimentally the observation of the tail is challen
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ing, since the time resolution needed is below the scatte
mean free time.
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APPENDIX: NUMERICAL INVERSION OF THE FOURIER
TRANSFORM IN THREE DIMENSIONS

In Eq. ~33! we gave an analytical expression f
PN(k,v) in three dimensions. To find the real space intens
P(r ,t) we have to sum over all the numberN of scattering
events and invert the Fourier transform. In this appendix
show how this can be done numerically. This is not straig
forward, because of the singularity atr5ct. For notational
simplicity we takel5c51 in what follows.

The sum of the contributions forN>4 is has no singular-
ity and is smooth att5r . It is given by
a

nd

,

g

-
’’

y

e
t-

(
N54

`

PN~r ,t !

5
1

4p3r E0
`

dk k23sin~kr !E
2`

`

dve2 ivt

3arctan5S k

12 iv D Fk2arctanS k

12 iv D G21

. ~A1!

The integral overv can be done by contour integration, clo
ing the contour in the lower half of the complex plane. T
contribution from the polek5arctan@k/(12iv)# is given by

I pole~k,t !52p exp~ tk/tank2t !
k2

sin2k
Q~p/22k!.

~A2!

To calculate the contribution from the branch cut betwe
v52 i2k andv52 i1k we parametrizev52 i1jk. We
find
I cut~k,t !5
pe2t

4k2 E21

1

djFcos~ktj!
4k2~5L4210L2p21p4!1~L21p2!2~3L22p2!

~4k22L22p2!2116k2L2 12 sin~ktj!L

3
2k2~3L22p2!~L223p2!1~L22p2!~L21p2!2

~4k22L22p2!2116k2L2 G , ~A3!
ob-
where we have abbreviatedL(j)52 artanh j. Next we cal-
culate the contributions forN<3. The ballistic termP0 is
already given in Eq.~13! and the single-scattering termP1 in
Eq. ~43!. For N52,3 we use the same parametrization
above, but interchange the integrals overk andj. We find

P2~r ,t !5
e2t

16pr Er /t
1

dj~3L22p2!, ~A4a!

P3~r ,t !5
e2t

8pr Er /t
1

djL~L22p2!~ tj2r !. ~A4b!
s

The total intensity is then given by

P~r ,t !5 (
N50

3

PN~r ,t !1
1

4p3r

3E
0

`

dk k sin~kr !@ I pole~k,t !1I cut~k,t !#.

~A5!

These integrals can be calculated numerically without pr
lems.
m
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